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Abstract:  In this paper we give some recurrence relations satisfied by single and product moments of generalized 

order statistics from doubly truncated generalized exponential distribution. These relations are deduced for moments 

of record values and order statistics. Further, using a recurrence relation for single moments we obtain a 

characterization of generalized exponential distribution. 
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1   Introduction 

The concept of generalized order statistics )(gos was introduced by Kamps [12]. A variety of order models 

of random variables is contained in this concept. 

Let ,, 21 XX
 
be a sequence of independent and identically distributed )(iid  

random variables )(rv  
with 

distribution function )(df  )(xF  
and probability density function )( pdf  )(xf . Assuming that 0k , 

Nn , m  and 0)1)((  mrnkr . If the random If the random variables ),,,( kmnrX , 

nr ,,2,1  , possess a joint pdf of the form  
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on the cone )1()0( 1
1

1   FxxF n , 

then they are called generalized order statistics of a sample from a distribution with df )(xF . Note that in 

the case 0m , 1k , this model reduces to the joint pdf  
of the ordinary order statistics, and when 

1m  we get the joint pdf  
of the k th upper record values. We shall also take 0),,,0( kmnX . On 

using (1.1), the pdf  
of the r th gos  

is given by 
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and the joint pdf  of ),,,( kmnrX  and ),,,( kmnsX , nsr 1 , is 
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where 
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Many recurrence relations between moments of generalized order statistics are available in the literature. 

Reference may be made to Cramer and Kamps [7], Pawlas and Szynal [21], Ahmad and Fawzy [2], Al-

Hussaini, et al. [4], Ahmad [1], Khan et al. [16, 17], Mahmoud and Al-Nagar [20], Khan et al. [18, 19], 

Athar and Nayabuddin [5] and references therein. 

Kamps and Gather [14] characterized the exponential distribution based on generalized order statistics. 

Keseling [15] characterized some continuous distributions based on conditional distributions of 

generalized order statistics. Ahsanullah [3] characterized the exponential distribution based on 

independence of functions of generalized order statistics and presented the estimators of its parameters. 

Bieniek and Szynal [6] characterized some distributions via linearity of regression of generalized order 

statistics. Cramer et al. [8] gave a unifying approach of characterization via linear regression of ordered 

random variables. Kamps [13] investigated the importance of recurrence relations of order statistics in 

characterization. 

The doubly truncated case of a distribution is the most general case since it includes the right, left and non-

truncated distribution as special cases. 

In this paper, we have obtained some recurrence relations for single and product moments of generalized 

order statistics from doubly truncated generalized exponential distribution. Further, various deductions and 

particular cases are discussed and a characterization of generalized exponential distribution has been 

obtained on using a recurrence relation for single moments. 

A random variable X  is said to have generalized exponential distribution if its pdf  is of the form 

  1)/1(
1 )1()(   xxf ,     /10  x , 10                                      (1.4) 

and the corresponding df  is 

  )/1(
1 )1(1)(  xxF  ,     /10  x , 10  .                        (1.5) 

Now if for given 1P  and 1Q
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then the truncated pdf  )(xf  is given by 
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, ),( 11 PQx                                     (1.6) 

and the corresponding df  )(xF  
is 

  )()1()( 2 xfxPxF  ,                (1.7) 

where 
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More details on this distribution and its applications see, Saran and Pandey [22]. 

2   Relations for Single Moments 

Note that for the doubly truncated generalized exponential distribution defined in (1.6) 

    )()1)(( 2 xFPxxf  .                                       (2.1) 

Recurrence relations for single moments of gos  from (1.6) can be obtained in the following theorem. 
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Proof   From equation (1.2), we have 
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and 
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Integrating by parts treating 1tx  for integration and the rest of the integrand for differentiation, we get 
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Now substituting for )(
),1(

1 xI
mkn

j


  and )(
),(

1 xI
kn

j  in equation (2.4) and simplifying the resulting 

expression, we derive the relations in (2.2) and (2.3). 

Remark 2.1: Setting 0m , 1k  in Theorem 2.1, we obtain recurrence relations for single moments 

of order statistics for the doubly truncated generalized exponential distribution in the form 
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 when 0Q , 1P  and 0  the above results agree with Joshi [10]. 

Remark 2.2: Substituting 1m  
in Theorem 2.1, relations for single moments of records can be 

obtained. 

Remark 2.3: Putting 0Q , 1P (for non-truncation case) in (2.3) we can deduce the following 

recurrence relations for the single moments of generalized order statistics from the generalized exponential 

distribution as the form 
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for 1 ij  the above result agrees with Saran and Pandey [22]. 
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3   Relations for Product Moments 
 

Theorem 3.1   For the given generalized exponential distribution and 2n , m , nrr  11  
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Proof    From (1.3), we have 

  )],,,(),,,([)],,,(),,,([ 1 kmnsXkmnrXEkmnsXkmnrXE jiji   

   ))(()())()(1(
!)1()!1(

111 1

1

1
xFgxfxFyyx

rsr

C r
m

mP

Q

P

x

jis  


     

    dydxyfyFxFhyFh srs
mm )())(())](())(([

11 


,         

    dxxGxFgxfxFx
rsr

C r
m

mP

Q

is )())(()())((
!)1()!1(

11 1

1




          (3.3) 

where 

 dyyfyFxFhyFhyyxG srs
mm

P

x

j )())(())](())(([)1()(
1111   

 . 

Making use of the relation in (2.1) and splitting the integral according with form, we have 

  dyyFxFhyFhyPxG
mkn

srs
mm

P

x

j
),1(1

))(())](())(([)( 11
2


  


 

           dyyFxFhyFhy srs
mm

P

x

j 
))(())](())(([ 111     

              )()(
),(

1
),1(

12 xGxGP
kn

j
mkn

j 


  ,                  (3.4) 

where 



14                                          Kumar and Khan.: Relations for Generalized Order Statistics from … 

 dyyFxFhyFhyxG
mkn

srs
mm

P

x

tmkn
t

),1(1
))(())](())(([)( 11),1(

1




  
  

and 

 dyyFxFhyFhyxG srs
mm

P

x

tkn
t


))(())](())(([)( 11),(

1

1 
    

Integrating by parts treating 1ty  for integration and the rest of the integrand for differentiation, we get for 

1 rs  

 







  

  11
1

))(()())((
1

)(
1

1
),( rr yFxdyyfyFy

t
xG tP

x

t
r

kn
t

  

and 

 













 





),1(

1
),1(

1
1

))(()())((
1

)(
1),1(

1
),1(

mkn
r

mkn
r yFxdyyfyFy

t
xG tP

x

tmkn
r

mkn
t


  

and for 2 rs  

  







 dyyfyFxFhyFhy
t

xG srs
mm

P

x

t
s

kn
t )())(())](())(([

1
)(

11),( 1   

     







 dyyfyFxFhyFhyrs
mrs

mm

P

x

t s )())(())](())(([)1( 21 
 

and 

 dyyfyFxFhyFhy
t

xG
mkn

srs
mm

P

x

tmkn
s

mkn
t )())(())](())(([

1
)(

11),1(),1(
),1(1 







 

  

            






 dyyfyFxFhyFhyrs

mkn
srs

mm

P

x

t )())(())](())(([)1(
12

),1(
1

1 
. 

Upon substituting for )(
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j  in equation (3.4) and then substituting the resulting 

expression for )(xG  in equation (3.3) and simplifying, we derive the relations in (3.1) and (3.2). 

Remark 3.1: Setting 0m , 1k  in (3.1) and (3.2), we obtain recurrence relations for product 

moments of order statistics for the doubly truncated generalized exponential distribution in the form 
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when 0Q , 1P and 0  the above results agree with Joshi [11]. 



Kumar and Khan: Relations for Generalized Order Statistics from …..                                                                     15 

Remark 3.2: Substituting 1m  
in (3.1) and (3.2), relations for product moments of records can be 

obtained. 

Remark 3.3: Putting 0Q , 1P  (for non-truncation case) in (3.1) and (3.2) we can deduce the 

following recurrence relation for the product moments of generalized order statistics from the generalized 

exponential distribution as the form 
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4   Characterization 

 

 Theorem 4.1   Fix a positive integer k  and let j  be a non-negative integer. A necessary and 

sufficient condition for a random variable X  to be distributed with pdf  given by equation (1.6) is that 
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Proof   The necessary part follows immediately from equation (2.3). On the other hand if the relation in 

equation (4.1) is satisfied, then on rearranging the terms in equation (4.1) and using (1.2), we have 
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Integrating the last two terms of RHS  in (4.4) by parts and using the values of )(xh
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 and )(1 xh
r  from 

(4.3), we get 
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Applying the extension of Müntz-Szász Theorem, (see for example Hwang and Lin, [9]), to equation (4.5), 

we get 

 )()1)(( 2 xFPxxf  . 

which proves that )(xf  has the form as in equation (2.1). 

Now we shall use recurrence relation in (2.6), )0( 2 P , to characterize the non-truncated generalized 

exponential distribution by the following theorem. 
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Theorem 4.2   Let X  be a non-negative random variable having an absolutely continuous distribution 

function )(1 xF  with 0)0(1 F  and 1)(0 1  xF  for all 0x , then 
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Integrating the second integrals on the right hand side of equation (4.7), by parts and simplifying the 

resulting equation, we get 
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Now applying a generalization of Müntz-Szász Theorem (Hwang and Lin, [9]) to equation (4.8), we get 
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which prove that    /1
1 )1()( xxF  ,    /10  x , 10  . 

5. Applications 

Recurrence relations are interesting in their own right. They are useful in reducing the number of 

operations necessary to obtain a general form for the function under consideration. Furthermore, they are 

used in characterization distributions, which in important area, permitting the identification of population 

distribution from the properties of the sample. The results established in this paper can be used to 

determine the mean, variance and coefficients of skewness and kurtosis. The moments can also be used for 

finding best linear unbiased estimator (BLUE) for parameter and conditional moments. 

6. Conclusion 

This paper deals with the generalized order statistics from the doubly truncated generalized exponential 

distribution. Some recurrence relations between the single and product moments are derived. Two 

characterizing results of doubly truncated generalized exponential distribution have been obtained using a 

recurrence relation for single moments. Special cases are also deduced. 
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